廃棄発泡スチロールと現地発生土を活かした多機能賃貸用地盤材料の開発

研究代表者：安福規之 1

共同研究者：落合英俊 1・大嶺聖 1・小林泰三 1・石川裕司 2

1 九州大学大学院工学研究院建築部門 2 九州大学大学院工学部建設都市コース

1. はじめに

建設産業は、わが国産業廃棄物全体の最終処分量の 30%程度を建設廃棄物として処分しており、資源循環に占める比率が極めて高い。一方で、建設産業は、他産業からの廃棄再生資材の受け入れ許容量が多く、産業間の連携を基本とした循環型社会の形成において大きな役割を担っている。建設リサイクルの現状を見ると、建設廃棄物全体としての再資源化率は 80%を超えているものの、建設発生土、建設発生木材、建設廃棄物の資源化率は十分とは言えない状況にある。また、一般廃棄物焼却灰、廃プラスチック、廃棄発泡スチロール、廃木材等の他産業廃棄物についても、従来の処理処分に限界が生じてきており、受け入れ容量の大きな地盤材料としての展開に期待が寄せられている。

研究代表者らは、このような背景から、産業間の連携を基本とした、廃棄物の有効利用に関する研究に取り組んできた 1)。その中で、この一年、発泡スチロール再資源化協会からの助成を得て、廃棄発泡スチロールの有効利用に焦点を当たって取り組み、具体的には、「廃棄発泡スチロールの有効利用による賃貸用地盤材料の開発」をめざして研究を進めてきた。ここでは、この一年の研究成果をまとめた。

2. 使用済み発泡スチロールのリサイクルの現状

参考文献 2) 4)を参照して、使用済み EPS の回収システムについて概観する。図-1 に、使用済み EPS の回収のフローを示す。大部分の EPS は、卸売市場やスーパーマーケット、飲食店、電子製品の販売店、機器メーカーの工場などで容器や緩衝材としての役割を終える。そして、これらの事業者が中心となってリサイクルが進められている。次に、使用済み発泡スチロールの処理については、排出量の約 40%がマテリアルリサイクルされている。また、約 30%がサーマルリサイクルされ、残りの約 30%が埋立、および単純焼却となっている。2005 年の実績で、マテリアルリサイクル(42%, 71,400t)とサーマルリサイクル(29.1%, 49,500t)を合わせて、使用済み発泡スチロールの約 71%がリサイクルされている。

発泡スチロールの生産量は横ばいであるのに対し、再資源化率の実績は年々伸びていることが報告されており、その中でマテリアルリサイクルとしての再資源化率 42%の内訳は、約 60%がインゴット、約 21%が再生レペット、約 6%が粉砕品、約 2%がケミカルリサイクル、約 10%がその他であり、インゴットの占めるウエイトは大きい。なお、インゴットとは、発泡スチロールを熟処理により軟化、脱泡し、ポリスチレン樹脂に戻し約 1/50 に減容したもののことである。インゴットは機械の種類により、ブロック状、板状、柱状等様々な形のものがあり、再生レペットに加工するための中間原料として認識されている。
3. HCCE材の製造と材料としての特徴

HCCE材(Heat Compressed Crushed EPS)とは、廃棄発泡スチロール減容材のことを指す。本研究で用いたHCCE材では、使用済み発泡スチロールを230℃で熱融融固化（減容化）したものを使い、クラッシャーで破砕し粒状材料としたものである。製造過程を模式的に示すと図-2のようになる。また、写真-1に、最終的に屋上緑化地盤材料として用いたHCCE材を示す。

HCCE材の平均的な土粒子密度は、1.13（g/cm³）である。実験に用いた2mm以下のHCCE材の平均粒径D₅₀は約1mm、均等係数Uₑは6程度である。また、最大間隙比εₑmaxと最小間隙比εₑminは、それぞれ1.846と1.206である。透水性は、締固め程度に多少依存するが、概ね10⁻⁴から10⁻⁵（m/s）の範囲に入るものである。その他の基本的な特性として、角張った粒子形状のものが大半をしめること、保水性の機能に欠けること、締固まりにくいこと、有害物質の流出や腐食の恐れが少なく化学的に安定していること等が挙げられる。なお、HCCE材粒子の物理的特性および力学特性は、溶融時の熱風の温度や冷却の方法によって制御できる可能性があり、また、破砕後の粒度分布はクラッシャーを調節することで変えることができた。したがって、求められる機能が明確であれば、それにあたる粒状材料としてのHCCE材の加工も可能ですと推測される。これら加工処理にかかる費用は、生産規模によって異なるため一概には言えないが、1kgあたり約65円であると報告されている。

3. 屋上緑化材料としての廃棄発泡スチロール減容材(HCCE材)と黒ぼくの適正

3.1 研究の背景と目的

発泡スチロールの廃材排出量は年々増加傾向にある。先にも述べたように、排出される発泡スチロールの約30%が埋立や単純焼却により処理されている現状にあり、有効なサイクルループシステムの開発が望まれている。一方で、近年、ヒートアイランド現象や大気汚染、騒音等都市部における環境問題が深刻化している。この環境問題を改善する方法として屋上緑化が注目されてきており、地方自治体でも屋上緑化を条例で義務付けなど屋上緑化へのニーズが高まっている。本研究課題では、このような背景を踏まえ、HCCE材を地盤材料として用い、このHCCE材と火山灰質粘性土(黒ぼく)を再利用して軽量化、保水性を有する省資源、低コストの屋上緑化地盤(植栽基盤)の開発を目指した。また、実験により屋上緑化地盤の保水性の評価を行ない、植栽基盤の性能について考察した。具体的には、HCCE材に、軽量化、保水性を有する火山灰質粘性土(黒ぼく)を混合し、地盤工学的観点から屋上緑化地盤材料への適応性を評価した。なお、黒ぼくは、九州に広く分布し、道路工事等が行われるとき建設残土として大量に発生する可能性をもつ火山灰質土のひとつである。

3.2 屋上緑化地盤材料に求められる機能その目標達
屋上緑化のための地盤材料として求められる機能には、「軽量性」「土の安定性」「透水性」「保水性」「保肥性」が代表的なものとして挙げられる。これらの機能を表す指標の目安として現在用いられている一般的な屋上緑化植栽地盤材料の性質を表-1に示す。表-1から分かるように屋上緑化地盤は、高い軽量性、適度な透水性、保水性、保肥性を有していることが条件となる。本研究で用いたHCCE材は軽量性は優れているが、保水性、透水性、保肥性、安定性の面で、屋上緑化材料としての性能を満たすことは難しい。一方で、これまでの研究により火山灰質粘性土である黒ぼくを用いることで保水性、保肥性、安定性が改善されることが知られている。そこで、本課題では、HCCE材と建設残土として確保が容易な黒ぼくを用いて植生に適した屋上緑化地盤材料の開発を目指した。植栽基盤の厚さは10cmと設定し、具体的な目標数値として軽量性は乾燥密度0.65g/cm³以下、保水性は有効水分量200L/m³以上、透水性は飽和透水係数k＝1.0×10⁻³〜1.41×10⁻⁴cm/s、安定性についてはコンクリート抵抗値300kPa以上とした。これらの数値は、建築基準法、植物が根腐れせないことに伴い必要な水分量などを、いくつかの制約条件の下で、実際の屋上で植生が保証できるように必要な目標値である。具体的には、HCCE材と黒ぼくの混合割合を変えて、締め試験、コンクリート抵抗試験、透水試験、保水性試験等を行い、各混合土が屋上緑化地盤材料として求められる機能をどの程度備えているか実験的に確認した。なお、有効水分量とは、土壤の保水性を示し、植物の吸水できるpH=1.5〜3.8までの範囲で保持できる水分量を表す。

表-1 一般の屋上緑化土壌に求められる機能

<table>
<thead>
<tr>
<th>軽量性</th>
<th>湿潤時比重100程度</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>酸性〜アルカリ性とさまざまな</td>
</tr>
<tr>
<td>有効水分量</td>
<td>100〜200L/m³</td>
</tr>
<tr>
<td>透水性</td>
<td>1.0×10⁻³〜1.41×10⁻⁴cm/s</td>
</tr>
<tr>
<td>保肥性</td>
<td>5〜20mg/100g程度</td>
</tr>
</tbody>
</table>

表-2 HCCE材及び黒ぼくの基本的性質

<table>
<thead>
<tr>
<th>HCCE材</th>
<th>黒ぼく</th>
</tr>
</thead>
<tbody>
<tr>
<td>W₀ (%)</td>
<td>0.04</td>
</tr>
<tr>
<td>ρ₀(g/cm³)</td>
<td>1.13</td>
</tr>
<tr>
<td>ρₐmax(g/cm³)</td>
<td>0.681</td>
</tr>
<tr>
<td>ρₐmin(g/cm³)</td>
<td>0.495</td>
</tr>
<tr>
<td>Iₚ</td>
<td>26.3</td>
</tr>
<tr>
<td>Li (%)</td>
<td>22.3</td>
</tr>
</tbody>
</table>

図-3 黒ぼくとHCCE材の粒径加積曲線

3.3 建設残土としての黒ぼくの基本的性質

黒ぼくは大分市と熊本市を結ぶ中九州横断道路の建設現場で採取した。HCCE材と黒ぼくの基本的性質を表-2、粒径加積曲線を図-3に示す。

これらの結果から、HCCE材と黒ぼくは土粒子密度から判断すると、相対的に軽量である。また強熱減量試験から、黒ぼくは22.3％有機物を含んでおり、保水性や保肥性の観点から考えると屋上緑化地盤材料に適した土といえる。

3.4 HCCE材・黒ぼく混合土の締め特性

HCCE材及び黒ぼくを屋上の人工地盤材料として用いる場合、まず、基礎的な締め特性から土の安定性を把握する必要がある。本研究ではHCCE材と黒ぼくの混合割合の違いによる特性の変化を把握するために、はじめに締め試験を行った。そしてコンクリート抵抗試験を行い、各混合割合の最適含水比状態におけるコンクリート抵抗値を比較した。混合割合はHCCE材重量混合比Mで表し、M=0％、20％、40％、60％、80％、100％に調整したものを作製した。なお、Mは次式で算出する。

\[M = \frac{W_{ab}}{W_0} \times 100 = \frac{W_{ab}}{W_{ab} + W_0} \times 100 \]
Wₕ：土全体の乾燥重量，Wᵥₕ：HCCE材乾燥重量，Wₕₖ：黒ぼか乾燥重量である。試料の準備方法は「湿潤法・非繰り返し法」とし，HCCE材と十分はぐし4.75mmふるいを通過した黒ぼかを混合し試料土とした。供試体は10cmモールドに2.5kgランマーで各層25回を3層に突き固めて作製した。 混合比40％，60％，80％の場合の締固め試験の結果を図-4に示す。この図は各混合土の含水比と乾燥密度の関係を表しており，HCCE材を40％程度以上混合すると，乾燥密度は，目標値である0.65g/cm³以下となることが分かる。また，図-4より，含水比の低下と共に，乾燥密度は，混合比に関わらずかなり低下することも読み取れる。

コーン貫入試験の結果を混合比とコーン抵抗値の関係として図-5に示す。M=0％から60％程度まではコーン抵抗値は増加し続けるが，M=60％を超えると低下が生じはじめ，最終的にはある値に収束するという結果となっている。安定性の指標として，湿地プルが走行可能なコーン指数300kN/m²を設定すると，安定性については，この結果からいずれの混合比においても目標値を満たしていると言える。

3.5 HCCE材・黒ぼか混合土の透水性および保水性

屋上緑化地盤材料には植物の生育，土の軽量性の確保が求められるため，土の透水性や保水性は重要な要素とされる。ここでは各混合を透水試験及び保水性試験によって比較することで，透水性と保水性の視点から，屋上緑化地盤材料として適切な混合比を検討する。

自然含水状態の黒ぼかとHCCE材を各混合比で混ぜた試料土を用い，供試体は，締固め試験と同様の締固めエネルギーで作製された。透水試験は，供試体を完全飽和させて実施し，保水性試験では毛管飽和させて行った。図-6は混合比と透水係数の関係を示したものである。なお透水試験は，M=0％から60％までは変水位透水試験法で行い，M=60％からは透水性の大きな試料に適した定水位透水試験法に切り替えを行った。図-6から，M=0％から40％までは透水係数1.0×10⁻⁴cm/s以下と低い値を示している。M=40％以上では透水係数が指数的に増加し，M=60％においては透水係数1.0×10⁻⁴cm/s程度と透水性の優れたものに変化している。これより，透水係数が目標値に入る混合比は，40％〜60％であることが伺える。

保水性は，屋上緑化地盤においてメンテナンス上重要となるので，保水性の評価は植栽基盤に欠かせない。そこで混合率Mを0，40，60，80，100％と変化させて土の保水性試験を行い，混合比と保水性の変化を定量的に評価した。保水性試験では各混合土の含水比に対する土のマトリックスポテンシャル
ル（サクション）を求めた。試験は−5〜−40kPa までは減圧法、−40〜−300kPa までは加圧法、それ以上のサクション値に対しては JGS 0151-2000 に準じた遠心法を利用した。すべての試験で、試料としては、黒ぼくを乾燥させ、十分にほぐし 4.75mm ふるいを通過させ、それに HCCE 材を混合し、毛管飽和させたものを初期状態とした。減圧法および加圧法による脱水過程での水分保持曲線を求めるための試験は、図-7 の装置により行なった。また、遠心法による保水試験では試料をサンプラーにゆる詰め状態で作成し、図-8 に示す高速冷却遠心機を用いて脱水を行い、脱水後の体積含水率とサンプラー内の土壌の高さ h を測定し、所定の関係式により pF（サクションの対数）値を算出した。各混合土の水分特性曲線の変化を図-9 に示す。図-9 から、同ボテンシャル段階での各混合比における含水比は M=0%が最も高く、HCCE 材の割合が増すごとに低下していることがわかる。目標値である有効水分量 200L/m³以上を満足するために、体積含水率 pF=3.8 において 20%を超えない必要がある。よって、図-9 の結果より、保水性としての目標値を満足するには混合率を 40%以下に抑える必要があることがわかる。

以上の結果より、HCCE 材と黒ぼくを活用して植栽基盤の開発を行う場合、HCCE 材の割合は黒ぼくに対しで質量比で 40%程度が適切であると結論付けられる。

4. 植栽実験による評価
4.1 植栽基盤の提案
先の結果をもとに、屋上緑化植栽基盤材料としては、重量比で HCCE 材 40%，黒ぼく 60%からなるものが優れていることを示した。この混合割合を保持した植栽基盤としては、少なくとも以下の二通りが考えられる（図-10 参照）。

1）HCCE 材 40%と黒ぼく 60%を混合した単層からなる植栽基盤（混合植栽基盤）

2）HCCE 材 40%と黒ぼく 60%の二層からなる植栽基盤（二層植栽基盤）

なお、2）の場合は、HCCE 材を軽量材の確保と排水層として活用し、黒ぼくを保水層として利用。また、二層化することによる透水性の調整機能の確保を念頭に置いたものとなっている。

ここでは、1）、2）の条件で植栽基盤を作成し、これらの植生への適正を植栽実験により植生の成
長度、発芽量などから検証を行った。
4.2 植栽実験の条件
植栽実験のためのプラントのサイズは、縦20cm、横20cm、深さ15cmのものを使用した。植栽基盤の初期の含水比状態は、いずれもほぼ含水比0%の空気乾燥状態とした。
植生には、西洋芝（ヘレニアアルグラス）を用い、種子約700粒を播種した。植栽基盤はゆるめ状態で作製し、その際に初期散水300mlを実施した。散水は1週間に1回行い、1回につき300mlとした。実験中の測定項目は、①植物の発芽数、②植物の高さ、③体積含水率（深さ5cmの位置で水分センサーを用いて測定）、④散水による沈下量である。①、②は植物の生育度を見るためのものである。
③は保水性の経時的変化を知るための測定項目である。
また、④は、空気層の変化をしめるためのものである。なお、実験はキャンパス屋上に設置した温室で実施し、1日に2〜3時間程度温室を空けて温室内の空気の入れ替えを行った。また、比較のために、屋上緑化土壌として既に市販されている2種類の試料を用いて植栽基盤を作成し、比較実験を行なった。図11は、植栽実験の条件を模式的に示したものである。
4.3 植栽実験による確認
図12は、混合植栽地盤と二層植栽地盤の植栽実験の様子を経時的に示したものである。図(a)-(d)は、順に播種後1日目の様子、2週間目の様子、1カ月目の様子、2ヶ月目の様子を比較している。これから、HCCE材と黒ぼくの割合が同じでも、二層化して植栽基盤を作成したほうが、植生が緑じて早い様子が伺える。図13は、経過日数と発芽率（発芽数を播種した種の数で割った率）の関係をまとめたものである。この図から、二層植栽基盤の方が混合植栽基盤に比べて早い時期からの発芽が確認できる。また、1カ月程度のデータであるが、この段階での発芽率は、二層植栽地盤が60％程度、混合地盤が20％程度であり、二層植栽地盤の植栽地盤としての優位性が伺える。しかし、市販の植栽地盤の発芽率に比べると多少劣る結果となった。この理由に保水性の不足が考えられ、現在、保水性を補う材料として木質チップを10-20％混入したケースで実験を進めている。その結果については、成果報告会にて報告したいと考えている。
5. まとめと今後の課題
屋上緑化地盤材料として求められる機能を整理し、その目標値を明確にしたうえで、廃棄発泡スチロール減容材（HCCE材）と火山灰質粘性土（黒ばく）の組み合わせによる屋上緑化植栽基盤材料の開発を行なってきた。現段階でのまとめとしての知見は以下のとおりである。

1）軽量性、保水性、透水性、安定性をバランスよく備えたHCCE材と黒ばくの混合率は、40％程度である。

2）植栽基盤全体で考えたときの混合率が同じでも、植栽基盤として保水層と排水層に二層化し、機能を分担したほうが、初期生育、長期生育ともに適している。これにより、不飽和状態で地盤を二層化することによるキャピラリーパリアー効果（止水効果）が基盤内部でうまく発揮されたことが要因として示唆される。

3）原材料である発泡スチロールを再利用した植栽基盤においても60％の発芽が確認できた。

また、今後の課題として、次のことが挙げられる。

1）さらに発芽率を改善するためには、今後保水性を補う材料の検討が必要である。

2）廃棄物を利用して植栽基盤の利用を推進するためには、維持管理のためのコストを抑える必要がある。このためには、低資源・低コストの管理システムの確立が不可欠である。本研究では、実験中、経営的に土中の水分量変化を計測している（図-14参照）。この水分量の経時的変化を利用した無灌水システムとそのメンテナンスフリーをめざし管理手法の開発に今後、取り組みたいと考えている。

最後に、発泡スチロール再資源化協会の助成をもとにこの1年、標記研究を進めてきた。ここに、深く感謝の意を表する次第である。

参考文献
1) 落合英俊・大嶺 聖・安福規之：混合地盤材料の開発とその力学的性能、軽量地盤材料の開発と適用に関するシンポジウム論文集, pp.117-148, 2000年5月
2) 塚本英樹・丸山健吉・日吉祐一・大嶺常雄：EPS減容リサイクル材の現状と裏込み材への適用, 基礎工, pp.106-108, 1998.11
3) 発泡スチロール再資源化協会：発泡スチロール減容品の用途開発事業報告書（EPS土木工法用幅盛土の裏込め材モデル実験）, 1998
4) 発泡スチロール再資源化協会：JEPSRA INFORMATION 2002，2006。
5) 末次大輔・落合英俊・安福規之：廃棄EPSインジェット破砕材を利用した軽量地盤材料の開発と適用に関するシンポジウム, pp.241-244, 2000