新たなダイレクトプッシュ型プローブによる原位置透水試験法の提案
○小林泰三1, 落合英俊1, 安福根之1, 大嶼賢1, 大場誠治1, 尾上弘則1
1 九州大学大学院工学研究

1. はじめに
近年、環境問題への関心の高まりを受けて、土木・地下水汚染の調査や地下水流動防保のための環境影響評価などの、地下水の管理や汚染対策の重要性が増している。地下水管理や地盤内汚染物質の移流・拡散予測を行う上では、信頼性の高い透水性評価が不可欠となる。本研究では、近年米国を中心に急速に開発が進んでいるダイレクトプッシュ法に注目し、その応用として新たなアイデアに基づく原位置透水試験法の開発を行っている。これは、ポーリングを行わず、コーン貫入試験のようなロード型のプローブに地盤中に直接貫入して地盤情報をセンシングするものである。ダイレクトプッシュ法を用いることにより、迅速かつ多数点での計測が可能となるうえ、これまでのポーリング孔（観測井）による揚水試験（その場の平均的な透水係数の評価）とは異なり、任意の地層かつ局所的な透水性の評価が可能となる。

原位置透水試験法としては、観測井を用いる以外にも、ピーコーンによる間隙水圧の消散試験や地下水流動試験（例えばハイドロパンチ2やBATシステム3）を用いる方法、スラグ試験などが実用化されているが、本研究で提案する方法は、機構、計測項目、データの解釈などの点で、これまでの方法とは異なるものである。また、提案法は、地下のサブプラーナーとしても利用できるため、汚染物質の検出その地盤の透水性を同時に評価できることになる。さらに、既往のコーン貫入試験と組合せることにより、同時に地盤の地質・地質判別や力学評価等も可能になるなど、広範な応用・付加価値を期待することができる。本報告では、提案する手法の基盤となる透水係数推定のアイデアを述べるとともに、その実現性を検討するために行った理論解析と模型実験を紹介する。

2. 透水係数推定のアイデアと試作機

水中的水は、水頭の高いところから低いところへ流れる。流速（あるいは流量）は、その水頭差と透水係数に依存する。すなわち、透水係数、透水係数が流れ場を支配する量であると考えると、透水係数は、流れと水頭差の組合せに対して一定的な関係にあると言える。したがって、その場の流量と水頭差を知ることによって透水係数が求めることがになる。本研究で提案する手法は、取水口（ストレーナー）を有するプローブから地下水を常温的に揚水するものであり、プローブ内に揚水された地下水の流量と水圧から透水係数を同定しようとするものである。図-1にその試作機の一例を示す。プローブ内部には小型の水中ポンプと水圧計、流量計が内蔵されており、ストレーナーに流入する流量と水圧を計測することができる。計測手段は、所望の深さにおいて貫入を停止し、貫入によると得られる水圧が発生することを確認してから水圧計のゼロ補正を行う。続いて揚水を開始し、水圧が安定するのを待って流量と水圧を計測する。本試験法では、水頭差の変化に対応した間隔のデータから透水係数を推定するものである。既往の揚水試験のように計測値の時刻変化を取得する必要がないため迅速に実施され、また土質による試験手法や計測時間等の差異も少ない。なお、地下計測に用いる水圧は、静水圧からの低下量（負圧）である。これを水頭差で△hと示すことにする。本研究で提案する手法は、水頭差△hと流量Qの組合せから透水係数kを同定しようとするものである。計測データである△hとQは、流れ場がある場所の境界値に過ぎない。したがって、透水係数kに関する逆問題を成立させるには（△h、Q）とkを関連づける理論モデルの構築が必要とする。以下では、揚水による取水口周辺の流れ場を有限要素法によって解析し、理論的な立場から提案する手法の可能性を検討する。

3. 有限要素法による浸透流解析とキャリブレーション係数

3.1 基礎方程式と解析モデル
図-1に示したプローブのように、円筒形のストレーナーによる揚水を想定した場合、取水口周りには軸対称の流れ場が形成されると考えられる。そこで、本研究では、（△h、Q）とkを関連づけるために、（r、θ、z）座標系の軸対称流れ場を仮定し、次式で表される浸透の基礎方程式を用いて有限要素解析を行った。

\[
\frac{\partial}{\partial r} \left( k_r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left( k_\theta \frac{\partial \psi}{\partial \theta} \right) + \frac{\partial}{\partial z} \left( k_z \frac{\partial \psi}{\partial z} + k_z \right) = 0
\]

In-situ permeability measurements with a new direct-push probe
T. Kobayashi1, H. Ochiai1, N. Yasufuku1, K. Omine1, S. Obata and H. Onoue1 (Kyushu University)
KEY WORDS: In-situ investigation, Direct-push technology, Coefficient of permeability, Ground water, Seepage analysis

- 255 -
ここに、\( r, k \): \( r \) 方向および \( z \) 方向に関する透水係数（ただし、以下では簡単のため異方性は考慮せず、\( k = k_z \) として単に \( k \) と記す）、\( \psi \): 壓力水頭である。上式は、軸対称条件による質量保存則とダルシー則から導かれるもので、浸透流解析で多く用いられる Richards の方程式において、飽和定常流れ、あるいは圧力水頭による土の間隙率がないと仮定した場合のそれに一致する。

図-2 は、本解析で用いた解析モデル（有限要素メッシュ）の一例である。本研究では、図に示すように、半径方向と深さ方向の比が 1:2 となるような解析境界（以下、ストレーナから解析境界までの半径距離を影響半径 \( R \) と呼ぶ）を設け、その境界面ではすべての節点に同一の全水頭 \( h_0 \) が作用するとした。影響半径は、ストレーナから十分離れており、揚水の影響が及ばないと思われる距離とする。一方、ストレーナに接する節点（境界）には全水頭 \( h_2 \) （\( < h_1 \)）を与え、\( h_1 \) と \( h_2 \) の水頭差 \( \Delta h \) によって流れ場を形成させる。なお、水頭差 \( \Delta h \) が一定である限り、\( h_1 \) または \( h_2 \) の大きさにはおよそ同一の流れ場が形成されることになるが、境界値である \( h_1 \) および \( h_2 \) を与える際には、その水頭差のみに留意すればよい。

3.2 計算結果とキャリプレーション係数

ストレーナの大きさ（半径 \( r, \) 高さ \( l \)）、また、水頭差 \( \Delta h \)、透水係数 \( k \) の条件を変化させて計算を行った結果、これらの変数の間には次のようなシンプルな関係があることが分かった。

\[ k = \alpha \frac{Q}{\Delta h} \]  \hspace{1cm} (2)

ここに、\( \alpha \) は透水係数と計算データを関連付ける定数であり、ストレーナの半径 \( r \) と高さ \( l \) によって決まる値である。本論文では、これをキャリプレーション係数と呼ぶことにする。影響半径を \( R = 500 \) cm とした計算の結果、図-1 に示したストレーナ半径 \( r = 1.8 \) cm、フィルター長さ \( l = 4 \) cm のプローブに対しては、\( \alpha = 3.92 \times 10^3 \) cm\(^2\) を得た。すなわち、このプローブを使用した場合、理論的には計算データの比 \( \frac{Q}{\Delta h} \) に \( 3.92 \times 10^3 \) cm\(^2\) を乗すことで実際に透水係数が求められることがある。

計算では、影響半径 \( R \) を十分大きくとることが重要である。そこで、適切な解析領域を設定するために、影響半径 \( R \) を様々な値にとって、それがキャリプレーション係数に及ぼす影響について検討した。図-3 は、\( R = 500 \) cm のときのキャリプレーション係数 \( \alpha_{500} \) に対する任意の \( R \) のときのキャリプレーション係数 \( \alpha \) の比率を示している。すなわち、\( R = 500 \) cm のときのキャリプレーション係数を 100 とし、解析領域がそれより小さい場合の \( \alpha \) にどの程度の変化がみられるのかを示したものである。ただし、ストレーナの半径は \( r = 1.8 \) cm と固定し、ストレーナ高さ \( l \) を 2〜32 cm の範囲で変化させた場合の結果である。この図から、\( l \) が大きいほどキャリプレーション係数に及ぼす \( R \) のとり方の影響が現れやすいことがわかるが、\( R = 200 \) cm で \( R = 500 \) cm のときと高々 2〜3%しか変わらないことがわかる。したがって、実験精度の問題から考えても、解析領域としては \( R = 200 \) cm 程度とすれば十分であると考えられる。よって、以下では、特に断らない限り \( R = 200 \) cm の条件で計算を行うことにする。表-1 に、様々なストレーナ条件に対するキャリプレーション係数の一覧を示す。この表から、任意のプローブに対するキャリプレーション係数が選択でき、これを用いることで式(2)の透水係数推定のためのモデル式が構築されることになる。ただし、表-1 に示したキャリプレーション係数は、透水係数の異方性を考慮していない。したがって、これから求められる透水係数は、水平および鉛直方向の透水係数の中間的な値となる。\( l \) が小さい場合には流れ場は球対称に近づくので推定値は水平および鉛直方向の平均的な値となり、また、\( l \) が十分大きい場合には水平方向の流れが卓越するので推定値は水平方向の透水係数に相当すると考えられる。本試験法による透水係数の異方位性評価の詳細については、別報 4) を参照されたい。

表-1 キャリプレーション係数 \( \alpha \) （\( \times 10^3 \) cm\(^2\))

<table>
<thead>
<tr>
<th>ストレーナ半径 ( r ) (cm)</th>
<th>ストレーナ高さ ( l ) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5.63</td>
</tr>
<tr>
<td>4</td>
<td>4.30</td>
</tr>
<tr>
<td>8</td>
<td>3.08</td>
</tr>
<tr>
<td>16</td>
<td>2.10</td>
</tr>
<tr>
<td>32</td>
<td>1.36</td>
</tr>
</tbody>
</table>

4. 模型実験による検証
4.1 実験装置と試料

上記の通り、理論的に地盤の透水係数 \( k \) は、プローブで計測される流量と水頭差の比 \( Q/\Delta h \) と線形関係にあることが分
一般に、管路における摩擦損失および形状損失は、流速（あるいは流量）の2乗に比例することが知られている。実測された損失水頭$h_l$と流量$Q$をフィッティングすることにより、今回用いたプローブでは$h_l$ = $(9.44\times10^{-4})Q^2$でほぼ関数付けられたことが分かった。当然のことながら、この関数の係数は用いるプローブの構造によって異なるため、揚水試験の前には同様の方法によって事前に求めておく必要がある。

ここに得られた損失水頭と流量の関係をもとに、揚水時に得られた一次データ$(Q, dh)$の補正を行った結果、損失分を排除した修正データとして図-7を得た。図-8の補正グラフと比較すると、補正後には、各試料のプロットの近似直線が原点を通るよう修正されているとともに、近似直線の勾配が大きくなっていることがわかる。この図より求められる近似直線の勾配は推定式(2)右辺の$\alpha dh$に他ならず、これに事前に求められているキャリプレーション係数$\alpha$を乗ずることで直接に透水係数が推定されることになる。本実験で使用したプローブのキャリプレーション係数は、前述とのとおり$\alpha = 3.92\times10^{-2}$cm$^3$であり、この方法で求められた透水係数を$k_{me}$とする。一方、密度調整した試料に対して測定を行った定水位透水試験の結果を$k_{max}$とし、$k_{me}$との比較を行った（図-9）。その結果、透水係数が小さい試料AとBでは、両者によい一致が見られたが、透水係数の大きい試料CとDに関しては、提案法の推定値が定水位試験値を下回る結果となった。一般に、粒径が大きくなると流れが乱流となりやすいことが知られており、不一致が見られた試料CとDに関しては、ダルシー則の適用限界を超えた流れ場が形成されていなかった可能性がある。乱流が発生すると、透水係数が大きくなっても流量が線形的に増加せず、よって$\alpha dh$も小さくなり、結果として$k_{me}$が過小に評価されることになる。

今回の実験では、データ数が限られているため十分な比較や検討は行えないが、平均粒径が0.35~0.55mm程度の砂では、提案法に妥当性があることを示す結果を得ることができた。今後は、更なるデータの蓄積を行い、粒径や透水係数に対する提案法の適用限界を明らかにしていく予定である。

5. おわりに

本研究では、ストレーンから地下水を定常的に揚水する原位置透水試験プローブを試作し、揚水される水の流量$Q$と水圧$dh$の組合せから地盤の透水係数を同定する手法を提案した。有限要素法を用いた流れ場の理論解析により、地盤の透水係数$k$は、計測されたデータ比$Q/dh$に定数$\alpha$を乗じることで与えられることが判明した。また、定数$\alpha$の値は、使用するストレーンの条件によって決定するものであり、有限要素法からその値を求めることができた。さらに、これらの原理を実証するための模型実験を行った結果、まず、取得データにはプローブ内の管路における水頭損失を考慮して補正する必要があり、事前にその補正量を求めておく必要のあることが分かった。また、4種類の砂を用いた揚水模型実験の結果、提案する手法では、平均粒径が0.35~0.55mm程度の砂地盤では、推定値と別途求めた実測値に良い一致が見られ、提案法に妥当性があることを示す結果を得ることができた。今後は、更なる実験データの蓄積を行い、提案法の適用限界の明確化や試験方法の合理化・最適化を行っていく予定である。

謝辞：本研究は、日本学術振興会科学研究費補助金（若手研究A）：土壌・地下水汚染の調査機能を有する多機能型コアーン入試験機の開発（課程番号：17686042）の補助を受けて実施されたものである。

参考文献
4) 大場慎治他：地下水揚水機能を有するダイレクトブッシュプローブを用いた透水係数の異方性評価，第42回地盤工学研究発表会発表講演集，C-03 (509), pp.1017-1018, 2007.
かった。このことを実験的に検証するために、図-1に示す試作ブローパを用いて室内試験実験を行った。使用した揚水ブローパのストレーナ半径は \( r = 1.8 \text{cm} \)、ストレーナ高さは \( h = 4 \text{cm} \) である。図-4は、実験に用いた模型土槽の写真である。土槽は、水槽と直径100cm、高さ100cmの多孔チャンバー（底面および側面からの水の流れが可能であり、また、内部に薄い不織布を敷設して試験の流れを防ぐ構造となっている）からなり、水槽内に設置した多孔チャンバーに乾燥状態の砂試料を充填した。このとき、多重ふるいによる空調落下法を用いて密度の均質化を図った。試料の充填後、水槽に水で満たして地盤を飽和させ、これを模型地盤とする。実験では、まず、土槽中央にブローパを油圧ジャッキによって所定の高さまで静に貫入し、傾斜等を防ぐために地表面で治具を用いて固定する。本研究では、ストレーナの中心が、土槽の中央・深さ50cmに位置するように貫入した。ブローパの貫入後、後部の水位計の値が安定するのを待ってゼロ補正する。続いて揚水を開始し、流れが定常状態になったのを確認した後、流量と水圧の計測を行う。

なお、静水圧でゼロ補正しているので、計測される水圧（負圧）の相対値（水頭表示）が式(2)の \( \Delta h \) に対応する。使用したブローパは、水中ポンプの電圧を変化させることによって出力（揚水力）を制御することがあるので、揚水力を任意に変化させて流量と水圧の組合せデータ（Q, \( \Delta h \)）を数多く計測する。本実験では、最大で100cm程度の水頭差 \( \Delta h \) を与えることにより、各試料につき、それ以下の水頭差で30点以上のデータを取得した。なお、模型地盤の地表面と水面は一致させ、揚水槽には水面の位置が一定になるように水を逐次補給し、揚水による水位低下（水頭変化）を防いだ。今回の実験では、粒径の異なる4種類の砂試料を用い、異なる透水係数を有する地盤を再現した。各試料の粒径加積曲線および透水量透水試験結果を図-5、表-2にそれぞれ示す。なお、ここで行った透水量透水試験は、立方体の試料に対して透水が水平および鉛直方向から行え独自の仕組みとなっており、縦（鉛直方向）と横（水平方向）の透水係数がそれぞれ求めることができる。表中の平均透水係数 \( k \) は、\( k_1 \) と \( k_2 \) の平均値である。なお試料は、模型実験と同様の容器を用いて空調落下法によって密度調整した。

4.2 実験結果とデータの補正

実験で得られた流量 \( Q \) と水頭差 \( \Delta h \) の関係を図-6に示す。ある透水係数のもつ地盤に対して、\( \Delta h \) が大きくなると \( Q \) も増加することは予想されるが、今回の実験で採用した水頭差（\( \Delta h = 15 \sim 100 \text{cm} \)）においては、各試料で流量 \( Q \) と水頭差 \( \Delta h \) の関には線形関係が見とれる。また、透水係数の大きな試料ほどその線形近似の傾斜も大きくなる傾向があることが分かる。このことは、ストレーナ条件を固定すると、地盤によって固有的 \( k \) と \( Q/\Delta h \) が一定的に決まるとするモデル式(2)を確立していることに他ならない。しかしながら、図から分かるように、線形近似は原点を通らず、切片を有することが分かる。このことは、水頭差のないにもかかわらず水の流れが発生するという物理的には起こりえない状況を示唆するものである。この原因として考えられるのは、ブローパ内部での水頭の損失である。ブローパ内部では、機構上、ストレーナ流出点から水圧測定点までの間に透水距離があり、その間に無視できない程度の透水管壁面摩擦による摩擦損失又は急縮小による形状損失等が発生し、式(2)に本来入力すべき水頭差を過大に評価してしまう可能性がある。そこで、問題となる損失水頭の程度を明らかにするために、図-4のチャッバ内に水だけを満たし、模型実験同様にポンプの出力を変化させて揚水を行った。